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Abstract

Biochemical systems are bound by two mathematically-relevant restrictions. First, state variables in such systems represen
non-negative quantities, such as concentrations of chemical compounds. Second, biochemical systems conserve mass and enel
Both properties must be reflected in results of an integration scheme applied to biochemical models. This paper first present:
a mathematical framework for biochemical problems, which includes an exact definition of biochemical conservation: elements
and energy, rather than state variable units, are conserved. We then analyze various fixed-step integration schemes, includir
traditional Euler-based schemes and the recently published modified Patankar schemes, and conclude that none of these deliv
unconditional positivity and biochemical conservation in combination with higher-order accuracy. Finally, we present two new
fixed-step integration schemes, one first-order and one second-order accurate, which do guarantee positivity and (biochemica
conservation.
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1. Introduction

Biochemistry holds an interesting niche for numerical mathematics, as it combines a great need for numerical tech:-
nigues with model systems that are constrained by mathematically-relevant, real-world restrictions. Such restrictions
are a direct consequence of the nature of biochemical state variables: these represent combinations of mass and
energy, both quantities that cannot become negative, nor created or destroyed (as specified by the first law of thel
modynamics) [20]. The former property implies state variables in biochemical systems are unconditionally positive.
The latter imposes a type of conservation. These properties represent two of the few cornerstones in biochemistry, an
are explicitly respected by any consistent biochemical modelling approach [12]. Integration schemes must not violate
either positivity or conservation, if they are to produce results that are meaningful in biochemical context.
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The exact mathematical implications of biochemical restrictions are often not well understood. In particular, treat-
ments of biochemical conservation in integration schemes abound [22,21,3], but are often limited at best. Variou
proposed definitions of conservation are tailored to simple biochemical systems [3], and would be demonstrably in
correct for many more advanced systems. Most other definitions forgo — as argued in this paper — the exact meaning
biochemical conservation [21], and should be considered too lenient for application to biochemical problems. In Sec
tion 2, we introduce a mathematical framework for biochemical systems that combines ideas from metabolic contrc
analysis [19] and theoretical biology [10,7]. We treat a minimal set of biochemical concepts necessary to derive al
exact definition of biochemical conservation. This ultimately renders conditions for conservation as well as positivity,
against which any integration scheme can be tested.

The need for unconditionally positive schemes may not be obvious, as non-positive integration schemes can rend
solutions that — though negative — approach the true solution well. Additionally, these schemes recover from negativ
values in some cases. For many biochemical systems, however, this argument is not valid. Such systems include OD
such as ¢/dr = —y/(y + k) with k > 0 (for substrate consumed in enzymatic reactions, or prey taken by predators),
or dz/dr = —z2 (when two molecules of the same compound react, or species mortality is density-dependent). Obvi-
ously,y =0 andz = 0 are system invariants. Given positive initial values, bptindz converge to 0. For negative
initial values, this is not guaranteed: fag < —k andzg < 0, state variables will approach negative infinity. In other
words, crossing the-axis can cause convergence to an unrealistic attractor that would never be approached by th
true solution. Hence, integration schemes that allow negative values cannot guarantee consistency with the origin
system of ODEs.

Many schemes obtain conditional positivity through adaptive time stepping. For instance, in fluid flow dynamics
the use of Courant-type conditions to ensure positivity (as well as stability) is prevalent [17]. However, we aim to
apply integration schemes to biochemical systems hosted in an existing biogeochemical modeling framework fo
water columns [2]. This comprehensive framework imposes a global time step; within a step, splitting schemes ar
applied in order to solve different parts of the problem — advection, diffusion, biochemistry — with different numerical
methods. The framework was not designed with an adaptive time step in mind, and would, not surprisingly, require
substantial modification to deal with such. Therefore, we will in this paper consider the framework as given, and
exclusively deal with the biochemistry part of the problem. We are thus confronted with the task of solving the
biochemical system for some predetermined time step. For such a scenario, non-adaptive schemes represent the n
straightforward and easily implemented solution; adaptive time stepping — though possible if the adaptive step is a
integer fraction of the global step, or interpolation is used — is somewhat of a hassle. Therefore, we restrict ourselve
in this paper to integration schemes thataneonditionally positive and conservative.

Few integration schemes offer unconditional positivity without caveats. In their fundamental paper [1], Bolley and
Crouzeix have shown that, within the class of traditional methods like linear multistep and Runge—Kutta methods
unconditional positivity restricts the order of the method to one. In [8] much attention is paid to this topic and it is
surveyed how to arrive at conditionally positive methods by taking special starting values. This applies in particular tc
higher order BDF methods (also called Gear methods) which lack unconditional positivity due to negative coefficients
(in spite of the excellent stability properties of these methods). Additionally, the first-order methods that satisfy the
condition of unconditional positivity are often computationally expensive (e.g. backward Euler), and hence unsuitable
when one values computational efficiency.

Mickens initiated the development of non-standard integration schemes [14], designed to preserve the physic:
properties of the original systems (in particular stability properties). For several systems, efficient, non-standard first
order schemes have been proposed that guarantee positivity of the solution [18,9]. However, for other systems, su
schemes have not been constructed, although great effort has been put into their development. Therefore, non-stand
schemes do not represent a definitive, generic solution for the condition of positivity. Another approach has bee
suggested by Sandu [21], and involves a projection method to get around the first-order barrier; however, its projectio
technique is founded on a common, ‘macroscopic’ definition of conservation that we show in Section 2 (Definition 7)
to be insufficient for biochemical systems.

Burchard et al. [3] presented a collection of unconditionally positive schemes that are inspired by the so-
called Patankar trick [16]. The collection includes the first-order accurate Modified Patankar (MP) scheme, and the
second-order accurate Modified Patankar—Runge—Kutta (MPRK) scheme. Both the original Patankar scheme al
the MP/MPRK schemes obtain unconditional positivity by treating the positive terms (sink fluxes) in the right-hand
sides of ODEs differently from the negative terms (source fluxes). Unlike the original Patankar scheme, the modi
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fied Patankar schemes could be shown to satisfy a minimal definition of conservation [3]. In Section 2 of this paper,
however, we demonstrate that this basic definition of conservation is unsuitable for many biochemical problems, anc
show that the modified Patankar schemes are conservative in the strict biochemical sense, only if certain, restrictive
conditions are met.

In Section 4, we systematically analyze a selection of integration schemes, both traditional (Euler schemes) anc
recent (Modified Patankar schemes), and prove that none of these satisfy the requirements of unconditional positivity
and (biochemical) conservation. In the same section, we propose two new fixed-step integration schemes, inspired b
the Patankar trick [16] and the work of Burchard et al. [3], and prove that these schemes are unconditionally positive,
and conservative in the biochemical sense. Finally, in Section 5, the accuracy, order, and computational cost of the
new schemes is analyzed empirically with the two simple test cases described in Section 3.

2. Biochemical concepts

A generic system of ordinary differential equations will be denoted by:

dc
5 @ =f(t.cm),

c(r) denoting the vector of length with state variable values at timeandf(z, c(¢)) denoting the vector with ODE
right-hand sides. Elements oft) andf(z, c(z)) will be denoted by; (t) and f; (¢, c(¢)), respectivelyj € {0, ..., I}.
For any vectoc, ¢ > 0 will be used to denote; > 0O, Vi.

For numerical schemes, the time at integration at@pll be denoted by". The time step will be denoted hy:.
As this paper deals only with schemes using a fixed time step, wertidve= 1 4+ Ar for anyn € N. The numerical
approximation of the solution vectof:") will be denoted byc”.

2.1. A framework for biochemical systems

The typical biochemical system df ordinary differential equations can be completely described by a sgt of
reactions A reaction describes the conversion of a set of source compounds into a set of sink compounds. Compound:
appear in ODE-based system definitions as state variables.

Take for instance the four-dimensional system of which the dynamic behavior is described by the following set of
ODEs:

dc C N

o - MK CKy+N

a_ . € N ,

dr "Ke+CKy+N o
dpr C N

F R ZFel e A

dD

EZEP.

This system describes the growth of phytoplankt®) én two nutrientsC and N (e.g. a carbon source and a
nitrogen source), and the death of phytoplankton, resulting in formation of detfi{usThe system contains six
parametersC requirementz (dimension:C/P), N requirementb (dimension:N/P), maximum specific growth
rate rmax (dimension:time™1), C half-saturationk¢ (dimension:C), N half-saturationk y (dimension:N), and
phytoplankton mortality (dimensiontime™1). Note that system (1) was chosen for notational simplicity rather than
realistic kinetics: the product of hyperbolae suffers from several problems regarding interpretation; better, mechanistic
replacements have been suggested [11,12].

This system can also be represented by two reactions:

C N
aC +bN 2ENPqp M(C N, P) = rmace——r o P
P with ¢ N 2)
1P 251D ra2(P) =¢eP.

Each reaction distinguishes source compounds (left of the arrow), and sink compounds (right of the arrow).
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For each reaction, threaction rater; (¢, c) represents the rate at which the reaction progresses. These may depend
both on time and the state of the system. The dimension (dim) of a reaction rate typically equals that of one o
the participating variables, per time. In (2), both reaction rates have been arbitrarily normalized on the referenc
variable P: dim(r1) = P produced time ! and dini(r») = P destroyed time 1. Reaction rates may be negative, in
which case the reaction is reversed, and the roles of sink and source interchange.

Constants preceding sink- and source variables in reactions refer to the amount of the variable destroyed or pr
duced per reaction, and are commonly referred tetaighiometric coefficientShese coefficients aiedependent
of both time and the state of the system. The dimension of stoichiometric coefficients equals the dimension of thei
associated variable, divided by the dimension of the reference variable on which the reaction rate was normalized, e.
dim(a) = dim(C) - dim(P)~1.

When dealing with reactions and stoichiometric coefficients, it is appropriate to define the system using matrix-
vector notation. This allows us to split the system in a time- and state-dependent part that describes reaction rates, &
a constant part that describes stoichiometric coefficients.

Definition 1. For a given (biochemical) system & reactions, define the time- and state-dependent reaction rate
vectorr € R, such that every element equals the rate at which reactigrprogresses [20,19,21].

For system (2), the reaction rate vector is given by:

ri Vmax—c N
r(C,N, P)= <r ) - ( KciC RntN ) _ "
2 eP

Definition 2. For a given (biochemical) system &f reactions, define the time- and state-independent stoichiometry
matrix Se R/*R [20,19,21]. Let every elemest; represent a stoichiometric coefficient, which describes the amount
of state variable produced per reactiop. If a compound acts as source in a reaction, it is consumed rather than
produced, and the correspondisig is negative. If a compound acts as sink, it is produced and the correspaiging

is positive.

For system (2), the stoichiometry matrix is:

—a 0
-b 0

s=1, | (4)
0 1

Rows correspond with state variablEésN, P and D, respectively, columns with reactions.

Definition 3. The product of the stoichiometry matrix and the reaction rate vector renders the net change in state
variable values, i.e. the right-hand side of the ODEs:

dc
@ Sr(t, ). (5)

For example (2), one can easily check that the product of (4) and (3) indeed renders the ODESs given in (1).
2.2. Positivity

Definition 4. A system of ODEs is called unconditionally positivef{f, ¢) is such that(s) > 0 for all 7 > 0, given
c(0) > 0.

Definition 5. An integration scheme is called unconditionally positive &1 > 0 for any givenc” > 0 and any
arbitrary time stepAr > O.

It is important to note that an unconditionally positive integration scheme only makes sense if applied to system:
that are themselves unconditionally positive.
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2.3. Conservation

In biochemical context, conservation refers to the fact that atoms and energy are conserved. State variables ref
resent compounds, which are time-invariant compositions of atoms of various element species, and a given amour
of chemical energy (e.g. enthalpy, or Gibbs free energy). Compounds are not conserved, but their constituents are
Therefore, the common closed-system-based definition of conservation that states the sum of all state variables i
constant does not cover the biochemical concept of conservation.

Definition 6. For a given (biochemical) system, define the time- and state-independent compound composition matrix
E e REX!, such that every elemef; equals the amount of compound constituggenergy or some element species)

per compound . Every row inE corresponds with a compound constituent; the number of i\iis. the number of
constituents monitored) depends solely on the interest of the modeler.

It is worth noting that many authors distinguish an elemental composition matrix that defines element counts per
compound, and an energy vector that defines energy (or enthalpy) per compound [20,10,7]. For the sake of simplicity
we combine both in the compound composition maliixhe energy vector is represented by one rov of

Typically, one includes irE only a selection of constituents tuned to the modeler’s interest. The selection may
exclude many element species, and even energy, if the modeler takes no interest in energetics. For system (2), or
could focus on the element species carbon (C) and nitrogen (N), and write:

1 0 a a
E=<o 1 b b)’ ©

where rows correspond with compound constituents (the elements C and N, respectively) and columns with com-
pounds C, N, P and D, respectively).

In other words, state variablé contains 1 atom of carbon and no nitrogen, state varidbntains no carbon
and 1 atom of nitrogen, and both varialileand D containa atoms of carbon anbl atoms of nitrogen.

The product of compound composition matxand stoichiometry matrids renders a matrix that defines the
change in elements and energy (rows) for the different reactions (columns). For the system to be conservative in th
biochemical sensehe total amount of any element species, and the total amount of energy must not be affected by
any reaction For a conservative system, this implies that the produEt ahdS must render a zero matrix.

Definition 7. A system is called conservative if it can be written as a set of reactions such as (2), with an associated
compound composition matri, that multiplied with stoichiometry matri®, renders art' x R zero matrix, that is:
ES=0][20,10].

Above implies the columns @ are part of the null space &. Equivalently, rang€S) C nullspac€E), and since
E e REX! we have rankS) < I — E if we assume rows oE are linearly independent [21]. In other words, the
number of linearly independent rows 3$ctannot be greater than the dimension of the syst@rdi(ninished with the
number of linearly independent conservation laws (rowi)of

If we multiply (6) and (4) for system (2):

—a 0
1 0 a a -b 0 00
ES:(O 1 b b) 1 1 =(0 o>’
0o 1

i.e. none of the reactions changes the total amount of any compound constituent (C, N).

In effect, Definition 7 defines conservation on thecroscopiclevel: the level of individual reactions. One
commonly encounters macroscopiadefinition of conservation that directly follows from Definition Ef(z, ¢) =
ESr (¢, c) = 0, which in turn impliesEc(z) is constant [21]. However, macroscopic conservation is a necessary but not
sufficient condition for microscopic conservation. If rdé8k< I — E = dimnullspac€éE) (assuming the rows d are
linearly independent), there exists a subspdce R/, H c nullspac€E) for which macroscopic but not microscopic
conservation is met (Andreas Meister, personal communication). Definition 7 is thus notably more strict than the com-
mon macroscopic definition of conservation [21], and deserves additional motivation. The main difference between
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macro- and microscopic conservation is this: systems that are conservative on the macroscopic level might preser
total element- and energy counts in the system by redistributing mass and energy along routes unaccounted for by a
reaction. Specifically, this would allow for apparent stoichiometric ratios to deviate from the imposed r&j@sin
these ratios are key determinants in various problems in biochemistry (e.g. the famous carbon:nitrogen:phosphor
‘Redfield’ ratio in marine systems), such deviations are better avoided.

Remark 8. Many biochemical systems are open to mass and energy, in the sense that one or more compounds p:
ticipating in reactions are external to the system. Such external compounds appear in the system as (environment
parameters, rather than as state variables, and are therefore not incl@l&wirthe purpose of demonstrating con-
servation, however, one can easily define a complete stoichiometry matrix that does include external compounds; th
matrix, rather than its subs8f should meet Definition 7.

Numerical integration involves a scheme-specific approximation of the change in state variable values within one
time step. To ensure meaningful results, the state variable change must foremost be consistent with the original syste
For biochemical systems, this obviously requires conservation of mass and energy. Arguably, consistence with bic
chemistry not only implies conservation on the macroscopic level (no elements or energy leave the system), but also
the microscopic level (no elements or energy are destroyed or created within one reaction). Analytically, conservatio
across individual reactions is ensured by construcBisgch that it meets Definition 7. Microscopic conservation for
any arbitrary biochemical system is then only guaranteed if state variables change directly and exclusively accordin
to the original stoichiometry matri®, using a scheme-specific approximation of reaction rates.

Definition 9. An integration scheme is called consistent with respect to biochemical systems, and conservative with
respect to mass and energy, if for every integration stefll, there exists a vectof that satisfies:

Cn+1 —'=S"At, (7)

S denoting the system-specific stoichiometry matrix (Definition 2). Vectomay be thought of as to represent a
scheme-specific approximation of the average reaction rate vegctoy between” ands"*1,

Obviously, for biochemical systems that are conservative in the sense of Definition 7, (7) implies conservation a
the macroscopic level:

E(c"™ — ") = E(S"Ar) =ES(r" A1) =0, (8)

i.e. the total amount of any element species, and of energy, remains constant. Condition (7) implies (8), but th
opposite is not necessarily true. This again reflects the difference between macroscopic and microscopic conservati
as described under Definition 7.

In the special case where all compounds are of equal composition, the columns of compound compositi@h matrix
are identical, i.eE;; = E;1, Vj € {2,..., I'}. Then, (8) implies that the sum of alf is constant; this is often used as
definition of conservation [3], but obviously falls short for biochemical purposes, except for simple cases such as the
nitrogen-based NPZ-type models like the one of Fasham et al. [5].

2.4. Order of accuracy

It is common ODE practice to define the order of accuracy of a method by means of its local truncation error:
Definition 10. Let ¢*+1 denote the numerical approximation obtained by applying the medhstarting at time” on
the exact solution, i.eq? = c(1"). Then,e:= c(t"+1) — ¢**1, the error made in one step, is called the local truncation

error.

The method? is said to be of ordep if e behaves as [6]:

e=0((AnPth.
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To visualize the order of the methods to be discussed, we will employ a relative mean square error, taken over all time
steps and averaged over all state variables:

1

N (1) — )2
ERR= 1 3 Z"=}V(Cl ) ~ )7,
1=\ YN (@)?

(9)

3. Model problems

To analyze the performance of the new integration schemes at realistive apply these schemes to two test
cases: a simple linear system for which an analytical solution is available, and the simple non-linear system (1).

3.1. Simple linear system

The simple linear system used in Burchard et al. [3] is given by:

der dco
— o — < _ _ 1
dt c2 acy, dt acq c2, ( 0)

with non-dimensional time, non-dimensional parameter0 and initial values1(0) = ¢? > 0 andc2(0) = 9 > 0.
The analytical solution of this system is given by:

c1(t) = (l + ce_(“+1)t)ci’°,

with the asymptotic solution
0, .0 0
oo 1t 1
L a+1 c°

Given that the system is closed and conservative (which impli@$ andcz(r) represent compounds with the same
composition and unitl1 (1) + c2(t) = ¢ + ¢ for all t > 0. Thus,cz(¢) is defined by:

c2(t) =949 — c1(2).

In sample simulationsg = 5, cg =0.9 and cg = 0.1 are used. Obviously;1(¢) + c2(z) = 1 for all ¢. All values
correspond with those used by Burchard et al. [3]. The analytical solution of the system for these values is shown in
Fig. 1.

Simple linear system

c1, analytical

......... ca, analytical

concentration

Fig. 1. Analytical reference solution for the simple linear system (10).
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Simple non-linear system
30
207
° —— C, high resolution
L"_:' --------- N, high resolution
§ ------ P, high resolution
§ --=== D, high resolution
110 TS T
\\
0 R TN e
0 10 20 30

Fig. 2. High-resolution numerical approximation of the solution of the simple non-linear system, as given by (1). This approximation was obtained
with a fourth-order accurate Runge—Kutta scheme [6, p. 138], vtk 0.01.

3.2. Simple non-linear system

As second test case, we use the simple biochemical system (1). This system may be interpreted as describing 1
ecosystem in the upper-mixed layer of the ocean in spring. It is similar to the simple non-linear system presented i
Burchard et al. [3], but includes an additional nutri€éhtThis change has been made to demonstrate conservation
problems of the modified Patankar scheme proposed in Burchard et al. [3] when reactions contain more than or
source compound. Note that for the limiting caSe~> oo, system (1) reduces to the simple non-linear system of
Burchard et al. [3]ibh = K¢ = Ky = rmax= 1.

In sample simulations, we uge=b = K¢ = Ky = rmax= 1 ande = 0.3. Initial state variable values were set to
c%=2998,N° =998, andP® = D° = 0.01. Since phytoplanktoR requires equal amounts 6fandN for growth
(a = b =1) while C is available in much higher amount thah C represents in effect a non-limiting nutrient.

Total initial amounts of compound constituents are given by the product of the compound composition matrix as
defined in (6), and the vector of initial state variable values, i.e.:

2998
E0_ (1 0 1 1)[998)_ (30
“\o 11 1)| o001 [T \10)

Note that this implie<C + P + D = 30 andN + P + D = 10 for all ¢, since the system is conservative (see also
Definition 7).

An analytical solution for the system cannot be obtained. Hence, we resort to a high-resolution approximation o
the solution to compare the results of various schemes against. This reference solution is shown in Fig. 2.

4. Numerical schemes
4.1. Forward Euler, Runge—Kutta

To familiarize the reader with biochemical conservation in the sense of (7), we first consider the well-known
forward Euler scheme:

cth=c" + Arf(e", ).
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This well-known scheme is first-order accurate. It is obviously not unconditionally positive, evendjive@: for
any f; (1", c") < 0, there exists a time stefor that results in:;“rl <0.

The forward Euler scheme is conservative with respect to mass and energy. Applying the scheme to (5), one
obtains:

="+ ArSe (", "),

and it is easily seen that the forward Euler scheme satisfies (7)r ¥t (¢, ).

Second- and higher order Runge—Kutta schemes are, like the forward Euler scheme, derived using Taylor serie
expansion ofc(z). For these schemes, one can also easily show that they are conservative, but not unconditionally
positive.

4.2. Backward Euler

The backward Euler (or implicit Euler) scheme is given by:
o= + Arf (et Y.

This scheme is known to be unconditionally positive [1,8]. Also, it is conservative in the sense of Definition 9 with
r* =r ("1, ¢*+1). In addition, the backward Euler scheme is also, unlike forward Euler, well suited for solving stiff
systems. Thus, it would seem well suitable for biochemical systems. However, the main drawback of the backward
Euler scheme is the high computational cost in each step: it requires the solution of a system of non-linear equa:
tions. The Newton method typically applied to this end requires (approximation of) the m#drjx)/ac, which
for most biochemical systems cannot be calculated analytically. Thus, one has to resort to numerical approxima-
tion of df(z, c)/ac, for instance by finite differences. This involves repeated, costly evaluations of ODE right-hand
sides.

Aside of associated computational costs, backward Euler is only first-order accurate, and higher-order implicit
schemes of this type (e.g. Gear schemes) cannot be constructed without sacrificing positivity [1,8].

4.3. Modified Patankar

Using the reaction-based system definition presented in Section 2, the modified Patankar (MP) scheme [3] is giver
by:
o=+ AarS (¢, (i, &),

matrix S'(¢*, ¢**1) being of the same size as the stoichiometry mariwith elements:

Sijic_'? for S,'jl’j <0,
0 for S;ir; =0,
S’// = C)H~1 o (ll)
Sij ZkeKj(pijklé—’kl) for S;jr; >0,K; #0,
Sii fOI’Sijrj>O, szg.
The setK ; represents the set of indices of state variables that act as source in rgaction
Kj={i: Sijrj<0,ief{l,....1}}. (12)

Constants & p;;jx < 1in (11) are constrained by the condition
Z pijk =1
kGKj

In words, source fluxes are multiplied with an associated ‘relative change’: the ratio between the approximated source
value at"*! and its value at”. Sink fluxes are multiplied with a weighed sum of relative changes in the corresponding
sources.
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It is worth noting that the original Patankar approach [16] is very similar, the only difference beingjthals,-j
for S,‘j}’j >0in (11).

The MP scheme has been shown to be unconditionally positive [3]. In the same paper, this scheme has been sho
to be conservative in the sense that for a closed system, the sum of state variables is constant. This, however, does
imply that the scheme is conservative in the sense of Definition 9.

For our example (2), matrig (¢”, ¢*+1) would be given by:

n+1

c
n+1
. —b 0
+ _ N
S’(Cn’ Cn ) - nC+l C§1\1+1 Cn+l ’
_ i
1()03,1,C o + P3, 1N CnN) 1 o
CVHrl
0 1
P

with p31.c + p31nv = 1.
To be conservative in the sense of Definition 9, there must exist a wégtsuch that matrixg (¢, ¢'*1) satisfies:

S(c, (", ¢") =S

For the example, this implies there must exist constghtmndr;, such that:

n+1
CC _ n
—a——r1=—ary,
C
C
n+1
C
—-b A; ry=—bry,
N
n+1 n+1 n+1
C C C
C N P
Y p31.c + 31N r1—1——ro=17 — 1rj,
o o o
C N P
n+1
C
P _ n
1c—nr2 = 1}"2 .
P

From the first two equations, one can derive that there only exists anfalitthe special case Wher:%“/c’é =
CX/H/C"M the relative decreases of the nitrogen- and the carbon source must be equal. Obviously, this condition wil
only be met in rare, temporary states. Thus, for system (2), the MP scheme is typically not conservative in the sens
of Definition 9. In fact, even the common, more lenient definition of conservation (8) does not hold for the MP
scheme applied to the example: Figs. 3 and 5 show that the total amount of carbéni + D) decreases over
time.

The above result can be generalized: if for everyiSgtall elements have equa&f“/c;' = p; ratios, the modified

Patankar scheme can be written as
cHh=c 4+ Ars (1, ¢ ) with (e, ¢t Y =i (e, ) pys (13)

implying conservation in the sense of Definition 9. Consequently, if ekgrgontains at most one element, the MP

scheme is conservative wighy = ¢j t*/c% for non-emptyk ;, andp; = 1 for K; = ¢.

We can conclude that the MP scheme is not conservative in the sense of Definition 9 for any arbitrary system (witt
arbitrary E andS). It is conservative if (1) all system reactions contain at most one source compound (&l;sets
contain at most one element), or (2) the relative changes in all sources are equal. However, for the many biochemic
systems that do not satisfy either requirement, the MP approach is clearly not suitable.

The second-order Modified Patankar-Runge—Kutta (MPRK) scheme may be considered to consist of two conse
utive MP steps. Therefore, it suffers from the problems with conservation as the MP approach. Although we do no
present the mathematical proof showing that the MPRK scheme is not conservative, we do show in Figs. 4 and
that the MPRK scheme applied to the simple non-linear system (1) violates Eq. (8): the total amount of carbon (i.e
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Modified Patankar scheme

T T

304 1

C, high resolution
210 ) N NS W — ) ISR N, high resolution
| N § s - P, high resolution

=== D, high resolution

—e— (', simulated

concentration

—=— N, simulated
—— P, simulated

—— D, simulated

0 10 20 30

Fig. 3. Coarse numerical approximation#= 0.5) with the Modified Patankar (MP) scheme [3] and high-resolution numerical approximation
(Ar = 0.01) with a Runge—Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Modified Patankar-Runge-Kutta scheme

T T

304 1

C, high resolution

D70 N \— ) N, high resolution

.............. P, high resolution
=== D high resolution
—e— (', simulated

—— N, simulated

concentration

+— P, simulated

—— D, simulated

0 10 20 30

Fig. 4. Coarse numerical approximatiofns(= 0.5) with the Modified Patankar—Runge—Kutta (MPRK) scheme [3] and high-resolution numerical
approximation At = 0.01) with a Runge—Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

C + P + D) decreases over time, due to the inordinate decreaSeowér time. Therefore, the MPRK scheme cannot
be conservative in the sense of Definition 9.

4.4. New scheme: first-order accuracy

We propose an integration scheme that is based on the (forward) Euler scheme, but guelranteesc N, given
0
c’ > 0.
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Conservation error of Modified Patankar schemes

29 +

total carbon (C'+ P+ D)

28 + J
27+ ]
analytical
| —®— MP scheme
26 MPRK scheme 1
0 10 20 30

t

Fig. 5. The total amount of carbon (i.€.+ P + D) with the Modified Patankar (MP) and Modified Patankar—Runge—Kutta (MPRK) schemes [3]
for the simple non-linear system (1).

The new scheme is given by:

n+1
cH=c" A", ) [[ L withJ"={i: fi(".c") <0, ie(l..... 1}, (14)
c
jeJn J

whereJ" represents the set of indices for state variables with negative derivative. Note thidt=as, the product
term drops out, and we are left with the Euler scheme (however, for a closed conservative gystefhper defini-
tion).

The scheme as given in (14) renders a systerh wdn-linear implicit equations, which must be solved to arrive
atc'+l,

4.4.1. System reduction

Let us start with a positive solution vectot > 0. Writing (14) component-wise and dividing th# equation
by ¢!, we arrive at:

Cr%+1
=1+ J

n n n ’
¢ i jem €i

G ALfi”, ¢) I1 iell,.. . 1)

Calculating the product of aﬂl’.’“/c?, Vi e J", we find

n+1 n+1

att Lo M e
[N-=11r———Il )
ieJn 1 ieJn t jeJnr J

Defining p := [T ,» ¢/, this can be simplified to:
Atfi(t",c")
p= II (14-——;%;————p .
jeJn J
To find p, it is convenient to define a functigy(p):

Atfi (", ¢
g(p) = ]_[<1+ %p)—sz (15)

jeJn J
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or, briefly:
gp)=[]@+ajp)—p=0 witha; = Arf; (", c")/c".
jeJr

The functiong(p) is a polynomial of a degree equal to the number of elementg’'jrand therefore has as many
roots, which may be real or complex. Thus, the problem to solve has been reduced from Arseth-dihear implicit
eqguations to a polynomial equation in one single unknown.

4.4.2. Restrictions on the-domain
From Eq. (14) and the fact that we require* > 0, we obtain the condition
'+ Atf;(1",c")p>0 foralliefl,..., I}.
As time stepAr is positive by definition, parameterhas to satisfy the followingd inequalities:

Cl’l

—— L if fi(",c") >0, 16
S TR fi(t".c") > (16)
c! .
——L if fi(:",c") <O. 17
P==Nifan oy fild", ¢) < (A7)
Note that if f; (+*, ") = 0 for somei € {1, ..., I'}, no further restrictions op are posed.
Since we require”*! > 0, givenc" > 0, we obtain:
n+1
p=H fc >0, (18)
jeJn

which gives another lower bound fer. This lower bound exceeds, and thus replaces, the (negative) bound defined
by (16).

From Eqg. (14) and conditions (17) and (18), we know thaiqf“ < c;? for all j € J", which implies there exists
another upper bound fgr:

n+1

p=]] 5 <1 (19)

jen i

Thus, the upper bound fgr is given by conditions (17) and (19):

"
=min{ 1, min(———L— ).
Pmax ( jeJ"( Atfj(t”,cn)>>

Now, the domain fop is given byp € (0, pmax)-
For these bounds, one can calculgtg):

g0 =1,
. Cj
g(Pmax) = { — pmax for pmax=minj e (— x7zgmen)-
y —1lwithy <1 for pmax=1.

Sinceg(0) > 0 andg(pmax) < 0 andg(p) is continuousg(p) must cross the-axis an uneven number of times
within the p-domain. Hence, we know(p) has at least one real root in the domaig (0, pmax), potentially more
(the maximum depending af).

4.4.3. Behavior of(p) in the p-domain
The derivative ofg(p) equals:

dg _ Atf; (", ") Atf; (", c") B
_—Z<7cn ]‘[ (1+7C,! p)) 1.

d
L i jedn, j#i J
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ReplacingAzf; (¢", c")/c!' by a; yields

j—i - Z(m | ]"[ ‘(1+ajp)) —1.
ieJn jeJn, j#i

Within the p-domain, we know X a; p > 0 for all i € J". Also, everya; will be negative for alli € J", asJ" by
definition comprises only those state variables for whic@”, ¢*) < 0. Thus, it is easily verified thatgddp < 0
within the p-domain.

Summarizing, within thep-domain of interestg (p) is a continuous decreasing functiongfstarting atg(0) > 0,
and ending at (pmax) < 0. Hence, there exists exactly one real roog @f) in this range.

To find this root, we may employ the relatively slow, but robust bisection iteration process, which is guaranteed
to find a root ofg(p), as we knowg (p) changes sign within the-domain0, pmax). While other schemes may find
the root ofg(p) much faster than the bisection process, such other schemes are often not guaranteed to converge
the correct root (e.g. Newton—Raphson, Secant), or have a strongly problem-dependent convergence rate (e.g. Reg
Falsi). More intelligent approaches, e.g. the use of a bisection-Newton—Raphson hybrid scheme, might be used
maximize performance, but such are not further explored in the present paper.

Theorem 11. The schemél4)is first-order accurate.

Proof. Givenp := ]_[jejn (c;f+1/c?), the new scheme can be written as:
ot =" + Arf(1", ") p.

Forc**1 to be a first-order approximation in= 1" + At, we need lim,_op = 1.
To prove this, we expand the product in Eq. (15):

k
g(p)=1+) bip'(At) — p=0, (20)
i=1
with k denoting the cardinal number of sét, and every; denoting some product of; (+", c”)/c’]? ratios, independent
of both p andAz.

For (20), one can easily see that= 1 is a solution for lim\;,—.o g(p) = 0. Since the bisection technique is guar-
anteed to converge to the only valid real valuepgfit will ultimately converge top = 1, making the new scheme
first-order accurate. However, the actual accuracy of the fouifftddepends on the number of bisection iterations
only for r — oo, we find p) — p. Therefore, the scheme (14) is theoretically only first-order accuratesifoo.

In practice, we stop bisection when the following condition is satisfied:

2Pright — Dleft
Dright + Pleft

Pleft and pright denoting the left- and right bounds of the bisectjgitlomain. Note that (21) implies that the first
9 digits of p are known accurately. We found that additional bisection iterations had no qualitative effect on the
results. O

<1079, (21)

Theorem 12. The schemél4)is unconditionally positive.

Proof. To enforce positive values for ad[‘“, we found abovey € (0, pmax). The bisection technique will return a
value forp from within this range, independent of the number of bisection iterations. Thus, the new first-order scheme
is unconditionally positive.

This is perhaps even more obvious if one considers that (14) can be interpreted as a rescaling of the time step
preserve positivity, compared to forward Eular. — p Az. The actual value op as found by our scheme is restricted
by (16) and (17): precisely the bounds required by conditionally positive schemes.

Theorem 13. The schemél4) is conservative in the sense of Definitian
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Proof. Using Definition 3, the new scheme is given by
l1+1
cH=c + (", ¢")(Atp). withp=[] L.

jeqr 7

This clearly satisfies Definition 9, with
" =pr(",c").

Note that Definition 9 is satisfied for any arbitrary scgarConservation of the new first-order scheme is therefore
independent of the number of bisection iterationsl

4.5. New scheme: second-order accuracy

We suggest the following scheme for second-order accurate results that are unconditionally positive and conserva
tive:

@
C.
W =¢" + Arf(1", ¢") l_[ cj_"
jesn T
At n+1 (22)
n n n ¢
C”+1=C”+7(f(t )+ e®) ck<1> ,
keK" “k
where
Jv=li: (1", ") <0, ie(l,....1}},
[ i) ) -

K"={i: fi(:", ")+ fi(t" W) <0, iefl, ..., 1}}.

Clearly, the first part of this scheme is identical to (14), i.e. identical to one integration step of the first-order scheme.
The second part in the scheme may be rewritten in the form:

Cn+1
cH=c"+ arh(e e c) T A
keKn ck (24)
with h(e", 2, &7, c) = (60", &) + £+ ) [
kekn Ck

which, sinceh(s", 1"*1, ¢, ) is independent of”*1, adequately demonstrates that also the second part is mathe-
matically similar to a step with the first-order method.

Given that the new scheme consists of two consecutive parts that are each mathematically equivalent to a ste
with the first-order scheme (14), the scheme {(22), (23)} can be implemented in the same manner as described ir
Section 4.4. Thus, the new scheme will need to find the real root of two different polynomials, for which we will again
apply the bisection technique.

Theorem 14. The schem§22), (23)} is second-order accurate.

Proof. As the first part of the new scheme is first-order accurate, we know:
c® = (") + O(Ar?) = " + Arf (1", c") + O(Ar?).
This can be used in a Taylor expansiorf @ft1, cV):

of
doc

(") (e ') + Arr (7. ¢) +0(ar?)
—f(n, ) + A;(g_i(zn, Y e+ oo cl)) +o(ar?).

f(ent, c®) =1(", ") +
(25)
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Using this in the second part of Eq. (22), we obtain:

1 At 1.1 gt
't =c”+7(f(;",c")+f(t"+ ) TT 25
kekn Ck
A At n of n n of n 2 ClrcH_l
_¢ +7(2f(t ,d)+m(a_c(; )+ o ,c”)>+O(At )> My
keK" “k
—er () + A (B e o)+ M) oad) T 67
! R e

For the new scheme to be second-order accurate, the product term on the right must beha®ésas 1 for Ar — 0.
Notice that a behavior of this term ast1O(Ar) would destroy the second-order of the scheme.

Because a step with the new first-order scheme has been proven to be first order accurate, we can use the fact t
we perform two first-order steps consecutively (see Eq. (24)) N¥er> 0 we may write:

n n
[Tw=T1 x
ek 6P ek G T ALf@, ) 4+ O(Ar2)

n+1 cp + G @ )+ felt™ e [eegn -5 +O(AL?)
k

[T%-=TI
n n ’
Ck

C
kekn k keK"

i o + F U e+ fi@" L EON e o +0AR)
kl;([n D cf + Atfi(e", c) + O(Ar?)

Using the first term in the Taylor expansion of (25) for gltz" 1, c®), we arrive at:

gt ¢ + (ALfi(a", €") + O(A) [Tiegn 5 +O(AF?)
- = k
kle_K[" o ek cp + Atfi (1", ¢") + O(Ar?)

Since] [;cgn cZ/c,((D behaves as + O(Ar) for Ar — 0, we see that

I ot I 4 Atfi(r", ") + O(Ar?)
e ¢ L A ALfin, ¢ +O(Ar)

indeed behaves astIO(Ar?). Thus, the new scheme {(22), (23)} is second-order accurate. Notice that the above proof
also demonstrates that the choice of the fagfgr ;. c}j*l/c,il) in (22) is not arbitrary. For instance, the alternative
choice[ [, gn CZH/CZ would lead to 1 O(Ar) for Ar — 0, making the scheme only first-order accurate.

Note that in theory, second-order accuracy is achieved only for an infinite number of bisection iterations. In practice
we stop bisection when condition (21) is satisfied; results did not further improve with more bisection iterations.

Theorem 15. The second-order scher{(22), (23)} is unconditionally positive.

Proof. As demonstrated in Eq. (24), the final step of the second-order scheme is mathematically equivalent to a first
order step, using the vector functits”, r*+1, ¢*, ) rather than the typicdls”, ¢*). The first-order scheme has
been shown to guarantee positive values, independé(t’ot”) and of the number of bisection iterations. Therefore,

the secgnd-order scheme likewise guarantees positive values for all elements ajf giwen a positive starting
vectorc®. 0O

Theorem 16. The second-order scherf(@2), (23)} is conservative in the sense of Definitian
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Proof. Using Definition 3, the final part of the new scheme is given by:

N Cn+l
ctt=c'+ —(Sr(" ) + S (" V) p, withp= [T g
kek” Ck

This may be written as:

="+ S(r(e", ¢") +r ("1 cP)) (%p),

which clearly shows that the second-order scheme satisfies Definition 9, with:
= g(r (t",c") +r ("t cD)).

Note as with the first-order scheme, Definition 9 is satisfied for any arbitrary const&unservation of the new
second-order scheme is therefore independent of the number of bisection iterations.

5. Discussion and conclusion

Mathematical analysis and numerical simulations have shown that the first- and second-order schemes we prese
in this paper are unconditionally positive, and conservative in the strict biochemical sense. The order of accuracy of
both schemes has been proven mathematically, and is also well demonstrated by Fig. 14.

Figs. 6—-13 demonstrate that the new schemes can deliver relatively accurate results, evenat@ugaumerical
approximation of the solution of the linear system is clearly more accurate than the one provided by traditional
schemes: the solution produced by the new first-order scheme is more accurate than that of the Euler scheme, and tl
solution provided by the new second-order scheme is more accurate than that of the Runge—Kutta 2 scheme. This |
reflected by the local truncation error of the various schemes, as shown in Fig. 14. Conversely, the traditional forward
Euler and Runge—Kutta schemes approximate the solution of the simple non-linear system more accurately than th
new schemes.

As shown in Fig. 15, the new schemes require a computational cost that is substantially higher than that of the
traditional schemes. This is a disadvantage, but not enough to discard the new schemes: biochemical problems requi
schemes that are unconditionally positive and conservative; results that do not satisfy these requirements are con
pletely meaningless in biochemical context. It is also worth noting that the new schemes will scale more favorably to
higher-dimensional systems than for instance the MP and MPRK schemes. This is due to the fact that the new scheme
always solve a scalar polynomial equation, whereas the MP/MPRK schemes solve a linear system/of order

Euler scheme

c¢1, analytical
fffffffff ¢, analytical

—e— ¢, simulated

concentration

—=— 9, simulated

Fig. 6. Numerical approximatior\t = 0.25) and analytical solution of the simple linear system (10) with the forward Euler scheme.
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Runge Kutta 2 scheme

concentration

[+model] P.18 (1-23)
by:R.M. p. 18

c1, analytical
_________ 2, analytical

—e— ¢, simulated

—— o, simulated

Fig. 7. Numerical approximationr = 0.25) and analytical solution of the simple linear system (10) with the Runge—Kutta 2 scheme ((22) without

product terms).

New first-order scheme

1.5

concentration

°1, analytical
"y, analytical
1, simulated

9, simulated

0

t

Fig. 8. Numerical approximatior\t = 0.25) with the new first-order scheme and analytical solution for the simple linear system (10).

New second-order scheme

concentration

c1, analytical
--------- ¢, analytical
—e— ¢, simulated
—a— (9, simulated

Fig. 9. Numerical approximatior\t = 0.25) with the new second-order scheme and analytical solution for the simple linear system (10).
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Euler scheme

304

—— C, high resolution
N, high resolution

e Phigh resolution
~---= D, high resolution
—e— (', simulated
—a— N, simulated
—— P, simulated

—a— D, simulated

concentration

0 10 20 30

Fig. 10. Coarse numerical approximations(= 0.5) with the forward Euler scheme and high-resolution numerical approximatios=(0.01)
with a Runge—Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Runge Kutta 2 scheme

304

C, high resolution

20F  Lu500000000000000000000000000000009 | <" N, high resolution
P, high resolution
fffff D, high resolution

—e— (, simulated

concentration

—=— N, simulated
—— P, simulated

—a— D, simulated

0 10 20 30
t

Fig. 11. Coarse numerical approximatiotz(= 0.5) with the Runge—Kutta 2 scheme ((22) without product terms) and high-resolution numerical
approximation A¢ = 0.01) with a Runge—Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Although unconditional positivity is the default in biochemistry, it is worth noting that some biochemical sys-
tems include one or more state variables that can become negative. For instance, the ERGOM model [15] include:
a state variable ‘oxygen concentration’ that represents oxygen when positive, and hydrogen sulfide when nega
tive. With the new schemes, this can easily be accounted for by excluding any such state variables ft6m sets
andK”.

Given the new schemes are unconditionally conservative and positive, the step size will be dictated by accuracy
reasons only. To obtain maximum efficiency, one could combine the new schemes with techniques that dynamically
adjust the time step based on estimated local error. While such approaches are beyond the scope of this paper, we m
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New first-order scheme

304 1

C, high resolution
20F  \__"“eeee00000000000000000000000009 | <"~ N, high resolution

------ P, high resolution
AAAAA D, high resolution

—e— (', simulated

concentration

—=— N, simulated
—— P, simulated

—— D, simulated

0 10 20 30

Fig. 12. Coarse numerical approximatiofiz(= 0.5) with the new first-order scheme and high-resolution numerical approximatios: 0.01)
with a Runge—Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

New second-order scheme

T T

304 i

C, high resolution

20F  Scoseeseeseesessescescescescescesees | < - N, high resolution
P, high resolution
—==-= D, high resolution

—e— (), simulated

concentration

—— N, simulated
—— P, simulated

—— D, simulated

Fig. 13. Coarse numerical approximatiaks(= 0.5) with the new second-order scheme and high-resolution numerical approximatiend.01)
with a Runge—Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

remark that the second-order scheme (22) also provides us with a first-order approximation to the solution in the ne!
time level. The difference between this value and the final result can be considered a (conservative) estimate of tt
local truncation error, and thus serve as the basis of an error estimator.

Further, we have shown that the modified Patankar and modified Patankar-Runge—Kutta schemes presented
Burchard et al. [3] are not conservative for any arbitrary biochemical system. The new schemes do conserve mass a
energy in two special cases, namely if: (1) all reactions in the system contain one source compound, or (2) the relativ
change over time is the same for all source compounds.
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Local truncation error for the simple linear system
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Fig. 14. The local truncation error summarized over all state variables, as defined in Eq. (9), for the reference forward Euler and Runge—Kutta 2
((22) without product terms) schemes and the new first-order and second-order schemes. Above: results for the simple linear system (10), calculate
with Ar =2/ x 1074 withi =0, ..., 12, andfmax= 1.8. Below: results for the simple non-linear system (1), calculated tvitk 2 x 102 with

i=0,..., 7, andrmax = 30. The strong increases in local truncation error at iiglior the Euler and Runge—Kutta schemes are due to instability.

Condition (1) is only met if one deals with simple biochemical systems [5]; realistic systems readily include
multiple source compounds per reaction. For instance, most marine ecosystems are modeled with phytoplanktol
growing on two or more nutrients (e.g. nitrate, phosphate, iron), and thus contain reactions with multiple source
compounds [13]. It must be noted that in some cases, a system that does not satisfy condition (1) can be reduce
to a system that does via elimination of variables (elimination is possible in any conservative system, asSows of
cannotbe linearly independent; see Definition 7). This is demonstrated in Reder [19]. One could apply this technique
to reduce the simple non-linear system (1) to a two-dimensional system that satisfies condition (1). However, for more
complex and realistic systems, this is typically not feasible in practice.

Condition (2) is even more unlikely to be met, as it requires both specific initial state variable values (their ratio
corresponding to the stoichiometric ratio of use), and highly simple system kinetics.

This does not imply that the modified Patankar schemes are without value: for biochemical systems that do mee
one of both conditions, the modified Patankar schemes offer a relatively inexpensive approach, which incidentally is
known to perform well on stiff systems [3,4].

In the present paper, we do not analyze the stability properties of the new schemes in detail. Application of the new
schemes to the infamous, highly stiff Robertson test case proved that the schemes have at least some problems wi
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Computational cost for the simple linear system

700

AQQ o

rel. cpu (%)

pI) | CE——

100

Euler RK2 MP MPRK new 1 new 2

Computational cost for the simple non-linear system

600 T T T . . .

400

rel. cpu (%)

200

100 p

Euler RK2 MP MPRK new 1 new 2

Fig. 15. Execution times of six integration schemes, relative to the forward Euler scheme, for the two sample systems. Shown respectively: th
forward Euler scheme, the second-order Runge—Kutta scheme (RK2) ((22) without product terms), the Modified Patankar (MP) scheme [3], th
Modified Patankar—Runge—Kutta (MPRK) scheme [3], the new first-order scheme (new 1) and the new second-order scheme (new 2). Computatior
costs for the backward Euler method depend strongly on the means chosen to solve the non-linear system of equations, and are therefore not shc

(highly) stiff systems: the new first-order scheme rendered oscillating (but positive) solutions, whereas the seconc
order scheme stalled the system through extremely smjédlctors. This behavior differs notably from that of the
modified Patankar schemes, which were capable of resolving the Robertson test case [3] and other stiff biochemic
problems [4]. This difference between Patankar-inspired schemes can intuitively be explained as follows: MP scheme
adjust the effective time step for different components of the system individually, whereas the new schemes adapt tt
effective time step for the whole system to the fastest component. Nevertheless, under no circumstances will the ne
schemes perform more poorly with respect to stability than the traditional schemes they were based upon, since tl
new schemes can be interpreted as traditional schemes with a downscaled time step. For many purposes they co
suffice; preliminary results showed that the new schemes were capable of solving the realistic stiff test cases of [4
This line of thought also suggests alternative approaches: one might selectively slow down individual reaction rate
rather than the whole system, thus obtaining a scheme that performs well on stiff systems, and (unlike MP scheme
adheres to biochemical conservation.

In conclusion, this paper has presented a structured, mathematical approach to the biochemical concept of cons
vation. This approach integrates recurrent ideas in biochemistry [20,19,10,7], and, to our knowledge, has not befol
been used in the analysis of numerical schemes. It may provide a context of analysis for existing and future scheme
and will hopefully result in an increasing number of schemes known to be suited for biochemical problems.
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