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Abstract

Biochemical systems are bound by two mathematically-relevant restrictions. First, state variables in such systems
non-negative quantities, such as concentrations of chemical compounds. Second, biochemical systems conserve mass
Both properties must be reflected in results of an integration scheme applied to biochemical models. This paper firs
a mathematical framework for biochemical problems, which includes an exact definition of biochemical conservation: e
and energy, rather than state variable units, are conserved. We then analyze various fixed-step integration schemes
traditional Euler-based schemes and the recently published modified Patankar schemes, and conclude that none of th
unconditional positivity and biochemical conservation in combination with higher-order accuracy. Finally, we present t
fixed-step integration schemes, one first-order and one second-order accurate, which do guarantee positivity and (bio
conservation.
 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Biochemistry holds an interesting niche for numerical mathematics, as it combines a great need for numeri
niques with model systems that are constrained by mathematically-relevant, real-world restrictions. Such re
are a direct consequence of the nature of biochemical state variables: these represent combinations of m
energy, both quantities that cannot become negative, nor created or destroyed (as specified by the first la
modynamics) [20]. The former property implies state variables in biochemical systems are unconditionally p
The latter imposes a type of conservation. These properties represent two of the few cornerstones in biochem
are explicitly respected by any consistent biochemical modelling approach [12]. Integration schemes must no
either positivity or conservation, if they are to produce results that are meaningful in biochemical context.
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The exact mathematical implications of biochemical restrictions are often not well understood. In particula
ments of biochemical conservation in integration schemes abound [22,21,3], but are often limited at best.
proposed definitions of conservation are tailored to simple biochemical systems [3], and would be demonst
correct for many more advanced systems. Most other definitions forgo – as argued in this paper – the exact m
biochemical conservation [21], and should be considered too lenient for application to biochemical problems
tion 2, we introduce a mathematical framework for biochemical systems that combines ideas from metabolic
analysis [19] and theoretical biology [10,7]. We treat a minimal set of biochemical concepts necessary to d
exact definition of biochemical conservation. This ultimately renders conditions for conservation as well as po
against which any integration scheme can be tested.

The need for unconditionally positive schemes may not be obvious, as non-positive integration schemes c
solutions that – though negative – approach the true solution well. Additionally, these schemes recover from
values in some cases. For many biochemical systems, however, this argument is not valid. Such systems incl
such as dy/dt = −y/(y + k) with k > 0 (for substrate consumed in enzymatic reactions, or prey taken by pred
or dz/dt = −z2 (when two molecules of the same compound react, or species mortality is density-dependent
ously,y = 0 andz = 0 are system invariants. Given positive initial values, bothy andz converge to 0. For negativ
initial values, this is not guaranteed: fory0 < −k andz0 < 0, state variables will approach negative infinity. In ot
words, crossing thet-axis can cause convergence to an unrealistic attractor that would never be approache
true solution. Hence, integration schemes that allow negative values cannot guarantee consistency with th
system of ODEs.

Many schemes obtain conditional positivity through adaptive time stepping. For instance, in fluid flow dy
the use of Courant-type conditions to ensure positivity (as well as stability) is prevalent [17]. However, we
apply integration schemes to biochemical systems hosted in an existing biogeochemical modeling frame
water columns [2]. This comprehensive framework imposes a global time step; within a step, splitting sche
applied in order to solve different parts of the problem – advection, diffusion, biochemistry – with different num
methods. The framework was not designed with an adaptive time step in mind, and would, not surprisingly,
substantial modification to deal with such. Therefore, we will in this paper consider the framework as give
exclusively deal with the biochemistry part of the problem. We are thus confronted with the task of solv
biochemical system for some predetermined time step. For such a scenario, non-adaptive schemes represe
straightforward and easily implemented solution; adaptive time stepping – though possible if the adaptive s
integer fraction of the global step, or interpolation is used – is somewhat of a hassle. Therefore, we restrict o
in this paper to integration schemes that areunconditionally positive and conservative.

Few integration schemes offer unconditional positivity without caveats. In their fundamental paper [1], Bol
Crouzeix have shown that, within the class of traditional methods like linear multistep and Runge–Kutta m
unconditional positivity restricts the order of the method to one. In [8] much attention is paid to this topic a
surveyed how to arrive at conditionally positive methods by taking special starting values. This applies in part
higher order BDF methods (also called Gear methods) which lack unconditional positivity due to negative coe
(in spite of the excellent stability properties of these methods). Additionally, the first-order methods that sat
condition of unconditional positivity are often computationally expensive (e.g. backward Euler), and hence un
when one values computational efficiency.

Mickens initiated the development of non-standard integration schemes [14], designed to preserve the
properties of the original systems (in particular stability properties). For several systems, efficient, non-stand
order schemes have been proposed that guarantee positivity of the solution [18,9]. However, for other syste
schemes have not been constructed, although great effort has been put into their development. Therefore, no
schemes do not represent a definitive, generic solution for the condition of positivity. Another approach h
suggested by Sandu [21], and involves a projection method to get around the first-order barrier; however, its p
technique is founded on a common, ‘macroscopic’ definition of conservation that we show in Section 2 (Defin
to be insufficient for biochemical systems.

Burchard et al. [3] presented a collection of unconditionally positive schemes that are inspired by
called Patankar trick [16]. The collection includes the first-order accurate Modified Patankar (MP) scheme,
second-order accurate Modified Patankar–Runge–Kutta (MPRK) scheme. Both the original Patankar sch
the MP/MPRK schemes obtain unconditional positivity by treating the positive terms (sink fluxes) in the righ
sides of ODEs differently from the negative terms (source fluxes). Unlike the original Patankar scheme, th



ARTICLE IN PRESS
S0168-9274(05)00224-2/FLA AID:1854 Vol.•••(•••) [+model] P.3 (1-23)
APNUM:m3SC+ v 1.50 Prn:12/01/2006; 12:16 apnum1854 by:R.M. p. 3

J. Bruggeman et al. / Applied Numerical Mathematics••• (••••) •••–••• 3

s paper,
ms, and
estrictive

es) and
positivity
spired by
positive,
st of the

l

of
mpounds

g set of

a
ix

than
hanistic
fied Patankar schemes could be shown to satisfy a minimal definition of conservation [3]. In Section 2 of thi
however, we demonstrate that this basic definition of conservation is unsuitable for many biochemical proble
show that the modified Patankar schemes are conservative in the strict biochemical sense, only if certain, r
conditions are met.

In Section 4, we systematically analyze a selection of integration schemes, both traditional (Euler schem
recent (Modified Patankar schemes), and prove that none of these satisfy the requirements of unconditional
and (biochemical) conservation. In the same section, we propose two new fixed-step integration schemes, in
the Patankar trick [16] and the work of Burchard et al. [3], and prove that these schemes are unconditionally
and conservative in the biochemical sense. Finally, in Section 5, the accuracy, order, and computational co
new schemes is analyzed empirically with the two simple test cases described in Section 3.

2. Biochemical concepts

A generic system ofI ordinary differential equations will be denoted by:

dc
dt

(t) = f
(
t, c(t)

)
,

c(t) denoting the vector of lengthI with state variable values at timet , andf(t, c(t)) denoting the vector with ODE
right-hand sides. Elements ofc(t) andf(t, c(t)) will be denoted byci(t) andfi(t, c(t)), respectively,i ∈ {0, . . . , I }.
For any vectorc, c > 0 will be used to denoteci > 0, ∀i.

For numerical schemes, the time at integration stepn will be denoted bytn. The time step will be denoted by�t .
As this paper deals only with schemes using a fixed time step, we havetn+1 = tn + �t for anyn ∈ N. The numerica
approximation of the solution vectorc(tn) will be denoted bycn.

2.1. A framework for biochemical systems

The typical biochemical system ofI ordinary differential equations can be completely described by a setR

reactions. A reaction describes the conversion of a set of source compounds into a set of sink compounds. Co
appear in ODE-based system definitions as state variables.

Take for instance the four-dimensional system of which the dynamic behavior is described by the followin
ODEs:

dC

dt
= −armax

C

KC + C

N

KN + N
P,

dN

dt
= −brmax

C

KC + C

N

KN + N
P,

(1)
dP

dt
= rmax

C

KC + C

N

KN + N
P − eP,

dD

dt
= eP .

This system describes the growth of phytoplankton (P ) on two nutrientsC andN (e.g. a carbon source and
nitrogen source), and the death of phytoplankton, resulting in formation of detritus (D). The system contains s
parameters:C requirementa (dimension:C/P ), N requirementb (dimension:N/P ), maximum specific growth
rate rmax (dimension:time−1), C half-saturationKC (dimension:C), N half-saturationKN (dimension:N ), and
phytoplankton mortalitye (dimension:time−1). Note that system (1) was chosen for notational simplicity rather
realistic kinetics: the product of hyperbolae suffers from several problems regarding interpretation; better, mec
replacements have been suggested [11,12].

This system can also be represented by two reactions:

aC + bN
r1(C,N,P )−−−−−−→ 1P r1(C,N,P ) = rmax

C

KC + C

N

KN + N
P,

with (2)
1P

r2(P )−−−→ 1D r2(P ) = eP .

Each reaction distinguishes source compounds (left of the arrow), and sink compounds (right of the arrow).
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For each reaction, thereaction raterj (t, c) represents the rate at which the reaction progresses. These may d
both on time and the state of the system. The dimension (dim) of a reaction rate typically equals that o
the participating variables, per time. In (2), both reaction rates have been arbitrarily normalized on the re
variableP : dim(r1) = P produced· time−1 and dim(r2) = P destroyed· time−1. Reaction rates may be negative,
which case the reaction is reversed, and the roles of sink and source interchange.

Constants preceding sink- and source variables in reactions refer to the amount of the variable destroye
duced per reaction, and are commonly referred to asstoichiometric coefficients. These coefficients areindependen
of both time and the state of the system. The dimension of stoichiometric coefficients equals the dimension
associated variable, divided by the dimension of the reference variable on which the reaction rate was norma
dim(a) = dim(C) · dim(P )−1.

When dealing with reactions and stoichiometric coefficients, it is appropriate to define the system using
vector notation. This allows us to split the system in a time- and state-dependent part that describes reaction
a constant part that describes stoichiometric coefficients.

Definition 1. For a given (biochemical) system ofR reactions, define the time- and state-dependent reaction
vectorr ∈ R

R , such that every elementrj equals the rate at which reactionj progresses [20,19,21].

For system (2), the reaction rate vector is given by:

r(C,N,P ) =
(

r1
r2

)
=

(
rmax

C
KC+C

N
KN+N

P

eP

)
. (3)

Definition 2. For a given (biochemical) system ofR reactions, define the time- and state-independent stoichiom
matrixS ∈ R

I×R [20,19,21]. Let every elementSij represent a stoichiometric coefficient, which describes the am
of state variablei produced per reactionj . If a compound acts as source in a reaction, it is consumed rathe
produced, and the correspondingSij is negative. If a compound acts as sink, it is produced and the correspondiSij

is positive.

For system (2), the stoichiometry matrix is:

S =



−a 0
−b 0
1 −1
0 1


 . (4)

Rows correspond with state variablesC, N , P andD, respectively, columns with reactions.

Definition 3. The product of the stoichiometry matrix and the reaction rate vector renders the net change
variable values, i.e. the right-hand side of the ODEs:

dc
dt

= Sr(t, c). (5)

For example (2), one can easily check that the product of (4) and (3) indeed renders the ODEs given in (1

2.2. Positivity

Definition 4. A system of ODEs is called unconditionally positive iff(t, c) is such thatc(t) > 0 for all t > 0, given
c(0) > 0.

Definition 5. An integration schemeΦ is called unconditionally positive ifcn+1 > 0 for any givencn > 0 and any
arbitrary time step�t > 0.

It is important to note that an unconditionally positive integration scheme only makes sense if applied to
that are themselves unconditionally positive.
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2.3. Conservation

In biochemical context, conservation refers to the fact that atoms and energy are conserved. State varia
resent compounds, which are time-invariant compositions of atoms of various element species, and a give
of chemical energy (e.g. enthalpy, or Gibbs free energy). Compounds are not conserved, but their constitu
Therefore, the common closed-system-based definition of conservation that states the sum of all state va
constant does not cover the biochemical concept of conservation.

Definition 6. For a given (biochemical) system, define the time- and state-independent compound compositio
E ∈ R

E×I , such that every elementEij equals the amount of compound constituenti (energy or some element specie
per compoundj . Every row inE corresponds with a compound constituent; the number of rowsE (i.e. the number o
constituents monitored) depends solely on the interest of the modeler.

It is worth noting that many authors distinguish an elemental composition matrix that defines element co
compound, and an energy vector that defines energy (or enthalpy) per compound [20,10,7]. For the sake of s
we combine both in the compound composition matrixE: the energy vector is represented by one row ofE.

Typically, one includes inE only a selection of constituents tuned to the modeler’s interest. The selection
exclude many element species, and even energy, if the modeler takes no interest in energetics. For system
could focus on the element species carbon (C) and nitrogen (N), and write:

E =
(

1 0 a a

0 1 b b

)
, (6)

where rows correspond with compound constituents (the elements C and N, respectively) and columns w
pounds (C, N , P andD, respectively).

In other words, state variableC contains 1 atom of carbon and no nitrogen, state variableN contains no carbo
and 1 atom of nitrogen, and both variableP andD containa atoms of carbon andb atoms of nitrogen.

The product of compound composition matrixE and stoichiometry matrixS renders a matrix that defines t
change in elements and energy (rows) for the different reactions (columns). For the system to be conservat
biochemical sense,the total amount of any element species, and the total amount of energy must not be affe
any reaction. For a conservative system, this implies that the product ofE andS must render a zero matrix.

Definition 7. A system is called conservative if it can be written as a set of reactions such as (2), with an ass
compound composition matrixE, that multiplied with stoichiometry matrixS, renders anE × R zero matrix, that is
ES = 0 [20,10].

Above implies the columns ofS are part of the null space ofE. Equivalently, range(S) ⊂ nullspace(E), and since
E ∈ R

E×I , we have rank(S) � I − E if we assume rows ofE are linearly independent [21]. In other words, t
number of linearly independent rows inS cannot be greater than the dimension of the system (I ) diminished with the
number of linearly independent conservation laws (rows ofE).

If we multiply (6) and (4) for system (2):

ES =
(

1 0 a a

0 1 b b

)


−a 0
−b 0
1 −1
0 1


 =

(
0 0
0 0

)
,

i.e. none of the reactions changes the total amount of any compound constituent (C, N).
In effect, Definition 7 defines conservation on themicroscopic level: the level of individual reactions. On

commonly encounters amacroscopicdefinition of conservation that directly follows from Definition 7:Ef(t, c) =
ESr(t, c) = 0, which in turn impliesEc(t) is constant [21]. However, macroscopic conservation is a necessary b
sufficient condition for microscopic conservation. If rank(S) < I − E = dimnullspace(E) (assuming the rows ofE are
linearly independent), there exists a subspaceH ⊂ R

I ,H ⊂ nullspace(E) for which macroscopic but not microscop
conservation is met (Andreas Meister, personal communication). Definition 7 is thus notably more strict than t
mon macroscopic definition of conservation [21], and deserves additional motivation. The main difference b
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macro- and microscopic conservation is this: systems that are conservative on the macroscopic level might
total element- and energy counts in the system by redistributing mass and energy along routes unaccounted
reaction. Specifically, this would allow for apparent stoichiometric ratios to deviate from the imposed ratiosS; as
these ratios are key determinants in various problems in biochemistry (e.g. the famous carbon:nitrogen:ph
‘Redfield’ ratio in marine systems), such deviations are better avoided.

Remark 8. Many biochemical systems are open to mass and energy, in the sense that one or more compo
ticipating in reactions are external to the system. Such external compounds appear in the system as (envir
parameters, rather than as state variables, and are therefore not included inS. For the purpose of demonstrating co
servation, however, one can easily define a complete stoichiometry matrix that does include external compou
matrix, rather than its subsetS, should meet Definition 7.

Numerical integration involves a scheme-specific approximation of the change in state variable values wi
time step. To ensure meaningful results, the state variable change must foremost be consistent with the origin
For biochemical systems, this obviously requires conservation of mass and energy. Arguably, consistence
chemistry not only implies conservation on the macroscopic level (no elements or energy leave the system), b
the microscopic level (no elements or energy are destroyed or created within one reaction). Analytically, cons
across individual reactions is ensured by constructingS such that it meets Definition 7. Microscopic conservation
any arbitrary biochemical system is then only guaranteed if state variables change directly and exclusively a
to the original stoichiometry matrixS, using a scheme-specific approximation of reaction rates.

Definition 9. An integration schemeΦ is called consistent with respect to biochemical systems, and conservativ
respect to mass and energy, if for every integration stepn + 1, there exists a vectorrn that satisfies:

cn+1 − cn = Srn�t, (7)

S denoting the system-specific stoichiometry matrix (Definition 2). Vectorrn may be thought of as to represen
scheme-specific approximation of the average reaction rate vectorr(t, c) betweentn andtn+1.

Obviously, for biochemical systems that are conservative in the sense of Definition 7, (7) implies conserv
the macroscopic level:

E
(
cn+1 − cn

) = E
(
Srn�t

) = ES
(
rn�t

) = 0, (8)

i.e. the total amount of any element species, and of energy, remains constant. Condition (7) implies (8)
opposite is not necessarily true. This again reflects the difference between macroscopic and microscopic con
as described under Definition 7.

In the special case where all compounds are of equal composition, the columns of compound compositionE
are identical, i.e.Eij = Ei1, ∀j ∈ {2, . . . , I }. Then, (8) implies that the sum of allci is constant; this is often used
definition of conservation [3], but obviously falls short for biochemical purposes, except for simple cases suc
nitrogen-based NPZ-type models like the one of Fasham et al. [5].

2.4. Order of accuracy

It is common ODE practice to define the order of accuracy of a method by means of its local truncation err

Definition 10. Let cn+1 denote the numerical approximation obtained by applying the methodΦ, starting at timetn on
the exact solution, i.e.,cn = c(tn). Then,e := c(tn+1)− cn+1, the error made in one step, is called the local trunca
error.

The methodΦ is said to be of orderp if e behaves as [6]:

e = O
(
(�t)p+1).
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To visualize the order of the methods to be discussed, we will employ a relative mean square error, taken ove
steps and averaged over all state variables:

ERR= 1

I

I∑
i=1

√√√√∑N
n=1(ci(tn) − cn

i )2∑N
n=1(ci(tn))2

. (9)

3. Model problems

To analyze the performance of the new integration schemes at realistic�t , we apply these schemes to two t
cases: a simple linear system for which an analytical solution is available, and the simple non-linear system

3.1. Simple linear system

The simple linear system used in Burchard et al. [3] is given by:

dc1

dt
= c2 − ac1,

dc2

dt
= ac1 − c2, (10)

with non-dimensional time, non-dimensional parametera � 0 and initial valuesc1(0) = c0
1 > 0 andc2(0) = c0

2 > 0.
The analytical solution of this system is given by:

c1(t) = (
1+ ce−(a+1)t

)
c∞

1 ,

with the asymptotic solution

c∞
1 = c0

1 + c0
2

a + 1
and c = c0

1

c∞
1

− 1.

Given that the system is closed and conservative (which impliesc1(t) andc2(t) represent compounds with the sa
composition and unit),c1(t) + c2(t) = c0

1 + c0
2 for all t � 0. Thus,c2(t) is defined by:

c2(t) = c0
1 + c0

2 − c1(t).

In sample simulations,a = 5, c0
1 = 0.9 andc0

2 = 0.1 are used. Obviously,c1(t) + c2(t) = 1 for all t . All values
correspond with those used by Burchard et al. [3]. The analytical solution of the system for these values is s
Fig. 1.

Fig. 1. Analytical reference solution for the simple linear system (10).
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Fig. 2. High-resolution numerical approximation of the solution of the simple non-linear system, as given by (1). This approximation was
with a fourth-order accurate Runge–Kutta scheme [6, p. 138], with�t = 0.01.

3.2. Simple non-linear system

As second test case, we use the simple biochemical system (1). This system may be interpreted as desc
ecosystem in the upper-mixed layer of the ocean in spring. It is similar to the simple non-linear system pres
Burchard et al. [3], but includes an additional nutrientC. This change has been made to demonstrate conserv
problems of the modified Patankar scheme proposed in Burchard et al. [3] when reactions contain more
source compound. Note that for the limiting caseC → ∞, system (1) reduces to the simple non-linear system
Burchard et al. [3] ifb = KC = KN = rmax= 1.

In sample simulations, we usea = b = KC = KN = rmax = 1 ande = 0.3. Initial state variable values were set
C0 = 29.98,N0 = 9.98, andP 0 = D0 = 0.01. Since phytoplanktonP requires equal amounts ofC andN for growth
(a = b = 1) while C is available in much higher amount thanN , C represents in effect a non-limiting nutrient.

Total initial amounts of compound constituents are given by the product of the compound composition m
defined in (6), and the vector of initial state variable values, i.e.:

Ec0 =
(

1 0 1 1
0 1 1 1

)


29.98
9.98
0.01
0.01


 =

(
30
10

)
.

Note that this impliesC + P + D = 30 andN + P + D = 10 for all t , since the system is conservative (see a
Definition 7).

An analytical solution for the system cannot be obtained. Hence, we resort to a high-resolution approxim
the solution to compare the results of various schemes against. This reference solution is shown in Fig. 2.

4. Numerical schemes

4.1. Forward Euler, Runge–Kutta

To familiarize the reader with biochemical conservation in the sense of (7), we first consider the well-
forward Euler scheme:

cn+1 = cn + �tf
(
tn, cn

)
.
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This well-known scheme is first-order accurate. It is obviously not unconditionally positive, even givencn > 0: for
anyfi(t

n, cn) < 0, there exists a time step�t that results incn+1
i < 0.

The forward Euler scheme is conservative with respect to mass and energy. Applying the scheme to
obtains:

cn+1 = cn + �tSr
(
tn, cn

)
,

and it is easily seen that the forward Euler scheme satisfies (7), withrn = r(tn, cn).
Second- and higher order Runge–Kutta schemes are, like the forward Euler scheme, derived using Tay

expansion ofc(t). For these schemes, one can also easily show that they are conservative, but not uncond
positive.

4.2. Backward Euler

The backward Euler (or implicit Euler) scheme is given by:

cn+1 = cn + �tf
(
tn+1, cn+1).

This scheme is known to be unconditionally positive [1,8]. Also, it is conservative in the sense of Definition
rn = r(tn+1, cn+1). In addition, the backward Euler scheme is also, unlike forward Euler, well suited for solvin
systems. Thus, it would seem well suitable for biochemical systems. However, the main drawback of the b
Euler scheme is the high computational cost in each step: it requires the solution of a system of non-line
tions. The Newton method typically applied to this end requires (approximation of) the matrix∂f(t, c)/∂c, which
for most biochemical systems cannot be calculated analytically. Thus, one has to resort to numerical ap
tion of ∂f(t, c)/∂c, for instance by finite differences. This involves repeated, costly evaluations of ODE right
sides.

Aside of associated computational costs, backward Euler is only first-order accurate, and higher-order
schemes of this type (e.g. Gear schemes) cannot be constructed without sacrificing positivity [1,8].

4.3. Modified Patankar

Using the reaction-based system definition presented in Section 2, the modified Patankar (MP) scheme [3
by:

cn+1 = cn + �tS′(cn, cn+1)r
(
tn, cn

)
,

matrix S′(cn, cn+1) being of the same size as the stoichiometry matrixS, with elements:

S′
ij =




Sij
cn+1
i

cn
i

for Sij rj < 0,

0 for Sij rj = 0,

Sij

∑
k∈Kj

(
ρijk

cn+1
k

cn
k

)
for Sij rj > 0,Kj �= ∅,

Sij for Sij rj > 0,Kj = ∅.

(11)

The setKj represents the set of indices of state variables that act as source in reactionj :

Kj = {
i: Sij rj < 0, i ∈ {1, . . . , I }}. (12)

Constants 0� ρijk � 1 in (11) are constrained by the condition∑
k∈Kj

ρijk = 1.

In words, source fluxes are multiplied with an associated ‘relative change’: the ratio between the approximate
value attn+1 and its value attn. Sink fluxes are multiplied with a weighed sum of relative changes in the correspo
sources.
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It is worth noting that the original Patankar approach [16] is very similar, the only difference being thatS′
ij = Sij

for Sij rj > 0 in (11).
The MP scheme has been shown to be unconditionally positive [3]. In the same paper, this scheme has be

to be conservative in the sense that for a closed system, the sum of state variables is constant. This, howeve
imply that the scheme is conservative in the sense of Definition 9.

For our example (2), matrixS′(cn, cn+1) would be given by:

S′(cn, cn+1) =




−a
cn+1
C

cn
C

0

−b
cn+1
N

cn
N

0

1
(
ρ3,1,C

cn+1
C

cn
C

+ ρ3,1,N
cn+1
N

cn
N

) −1
cn+1
P

cn
P

0 1
cn+1
P

cn
P




,

with ρ3,1,C + ρ3,1,N = 1.
To be conservative in the sense of Definition 9, there must exist a vectorrn, such that matrixS′(cn, cn+1) satisfies:

S′(cn, cn+1)r
(
tn, cn

) = Srn.

For the example, this implies there must exist constantsrn
1 andrn

2 , such that:

−a
cn+1
C

cn
C

r1 = −arn
1 ,

−b
cn+1
N

cn
N

r1 = −brn
1 ,

1

(
ρ3,1,C

cn+1
C

cn
C

+ ρ3,1,N

cn+1
N

cn
N

)
r1 − 1

cn+1
P

cn
P

r2 = 1rn
1 − 1rn

2 ,

1
cn+1
P

cn
P

r2 = 1rn
2 .

From the first two equations, one can derive that there only exists a validrn
1 in the special case wherecn+1

C /cn
C =

cn+1
N /cn

N : the relative decreases of the nitrogen- and the carbon source must be equal. Obviously, this cond
only be met in rare, temporary states. Thus, for system (2), the MP scheme is typically not conservative in t
of Definition 9. In fact, even the common, more lenient definition of conservation (8) does not hold for th
scheme applied to the example: Figs. 3 and 5 show that the total amount of carbon (i.e.C + P + D) decreases ove
time.

The above result can be generalized: if for every setKj , all elementsi have equalcn+1
i /cn

i = pj ratios, the modified
Patankar scheme can be written as

cn+1 = cn + �tSrn
(
tn, cn, cn+1) with rn

j

(
tn, cn, cn+1) = rj

(
tn, cn

)
pj , (13)

implying conservation in the sense of Definition 9. Consequently, if everyKj contains at most one element, the M
scheme is conservative withpj = cn+1

1 /cn
1 for non-emptyKj , andpj = 1 for Kj = ∅.

We can conclude that the MP scheme is not conservative in the sense of Definition 9 for any arbitrary syste
arbitraryE andS). It is conservative if (1) all system reactions contain at most one source compound (all sKj

contain at most one element), or (2) the relative changes in all sources are equal. However, for the many bio
systems that do not satisfy either requirement, the MP approach is clearly not suitable.

The second-order Modified Patankar–Runge–Kutta (MPRK) scheme may be considered to consist of two
utive MP steps. Therefore, it suffers from the problems with conservation as the MP approach. Although we
present the mathematical proof showing that the MPRK scheme is not conservative, we do show in Figs.
that the MPRK scheme applied to the simple non-linear system (1) violates Eq. (8): the total amount of car
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Fig. 3. Coarse numerical approximation (�t = 0.5) with the Modified Patankar (MP) scheme [3] and high-resolution numerical approxim
(�t = 0.01) with a Runge–Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Fig. 4. Coarse numerical approximation (�t = 0.5) with the Modified Patankar–Runge–Kutta (MPRK) scheme [3] and high-resolution num
approximation (�t = 0.01) with a Runge–Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

C + P + D) decreases over time, due to the inordinate decrease ofC over time. Therefore, the MPRK scheme can
be conservative in the sense of Definition 9.

4.4. New scheme: first-order accuracy

We propose an integration scheme that is based on the (forward) Euler scheme, but guaranteescn > 0,n ∈ N, given
c0 > 0.
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es [3]

ive
Fig. 5. The total amount of carbon (i.e.C + P + D) with the Modified Patankar (MP) and Modified Patankar–Runge–Kutta (MPRK) schem
for the simple non-linear system (1).

The new scheme is given by:

cn+1 = cn + �tf
(
tn, cn

) ∏
j∈Jn

cn+1
j

cn
j

with Jn = {
i: fi

(
tn, cn

)
< 0, i ∈ {1, . . . , I }}, (14)

whereJn represents the set of indices for state variables with negative derivative. Note that forJn = ∅, the product
term drops out, and we are left with the Euler scheme (however, for a closed conservative system,Jn �= ∅ per defini-
tion).

The scheme as given in (14) renders a system ofI non-linear implicit equations, which must be solved to arr
at cn+1.

4.4.1. System reduction
Let us start with a positive solution vectorcn > 0. Writing (14) component-wise and dividing theith equation

by cn
i , we arrive at:

cn+1
i

cn
i

= 1+ �tfi(t
n, cn)

cn
i

∏
j∈Jn

cn+1
j

cn
j

, i ∈ {1, . . . , I }.

Calculating the product of allcn+1
i /cn

i , ∀i ∈ Jn, we find

∏
i∈Jn

cn+1
i

cn
i

=
∏
i∈Jn

(
1+ �tfi(t

n, cn)

cn
i

∏
j∈Jn

cn+1
j

cn
j

)
.

Definingp := ∏
j∈Jn cn+1

j /cn
j , this can be simplified to:

p =
∏
j∈Jn

(
1+ �tfj (t

n, cn)

cn
j

p

)
.

To findp, it is convenient to define a functiong(p):

g(p) =
∏
j∈Jn

(
1+ �tfj (t

n, cn)

cn
j

p

)
− p = 0, (15)
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efined
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s

or, briefly:

g(p) =
∏
j∈Jn

(1+ ajp) − p = 0 with aj = �tfj

(
tn, cn

)
/cn

j .

The functiong(p) is a polynomial of a degree equal to the number of elements inJn, and therefore has as ma
roots, which may be real or complex. Thus, the problem to solve has been reduced from a set ofI non-linear implicit
equations to a polynomial equation in one single unknown.

4.4.2. Restrictions on thep-domain
From Eq. (14) and the fact that we requirecn+1 > 0, we obtain the condition

cn
i + �tfi

(
tn, cn

)
p > 0 for all i ∈ {1, . . . , I }.

As time step�t is positive by definition, parameterp has to satisfy the followingI inequalities:

p > − cn
i

�tfi(tn, cn)
if fi

(
tn, cn

)
> 0, (16)

p < − cn
i

�tfi(tn, cn)
if fi

(
tn, cn

)
< 0. (17)

Note that iffi(t
n, cn) = 0 for somei ∈ {1, . . . , I }, no further restrictions onp are posed.

Since we requirecn+1 > 0, givencn > 0, we obtain:

p =
∏
j∈Jn

cn+1
j

cn
j

> 0, (18)

which gives another lower bound forp. This lower bound exceeds, and thus replaces, the (negative) bound d
by (16).

From Eq. (14) and conditions (17) and (18), we know that 0< cn+1
j < cn

j for all j ∈ Jn, which implies there exist
another upper bound forp:

p =
∏
j∈Jn

cn+1
j

cn
j

< 1. (19)

Thus, the upper bound forp is given by conditions (17) and (19):

pmax= min

(
1, min

j∈Jn

(
− cn

j

�tfj (tn, cn)

))
.

Now, the domain forp is given byp ∈ (0,pmax).
For these bounds, one can calculateg(p):

g(0) = 1,

g(pmax) =
{

−pmax for pmax= minj∈Jn

(− cn
j

�tfj (tn,cn)

)
,

γ − 1 with γ < 1 for pmax= 1.

Sinceg(0) > 0 andg(pmax) < 0 andg(p) is continuous,g(p) must cross thep-axis an uneven number of time
within thep-domain. Hence, we knowg(p) has at least one real root in the domainp ∈ (0,pmax), potentially more
(the maximum depending onJn).

4.4.3. Behavior ofg(p) in thep-domain
The derivative ofg(p) equals:

dg

dp
=

∑
n

(
�tfi(t

n, cn)

cn
i

∏
n

(
1+ �tfj (t

n, cn)

cn
j

p

))
− 1.
i∈J j∈J , j �=i
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Replacing�tfi(t
n, cn)/cn

i by ai yields

dg

dp
=

∑
i∈Jn

(
ai

∏
j∈Jn, j �=i

(1+ ajp)

)
− 1.

Within the p-domain, we know 1+ aip > 0 for all i ∈ Jn. Also, everyai will be negative for alli ∈ Jn, asJn by
definition comprises only those state variables for whichfi(t

n, cn) < 0. Thus, it is easily verified that dg/dp < 0
within thep-domain.

Summarizing, within thep-domain of interest,g(p) is a continuous decreasing function ofp, starting atg(0) > 0,
and ending atg(pmax) < 0. Hence, there exists exactly one real root ofg(p) in this range.

To find this root, we may employ the relatively slow, but robust bisection iteration process, which is gua
to find a root ofg(p), as we knowg(p) changes sign within thep-domain(0,pmax). While other schemes may fin
the root ofg(p) much faster than the bisection process, such other schemes are often not guaranteed to co
the correct root (e.g. Newton–Raphson, Secant), or have a strongly problem-dependent convergence rate (e
Falsi). More intelligent approaches, e.g. the use of a bisection-Newton–Raphson hybrid scheme, might be
maximize performance, but such are not further explored in the present paper.

Theorem 11. The scheme(14) is first-order accurate.

Proof. Givenp := ∏
j∈Jn(c

n+1
j /cn

j ), the new scheme can be written as:

cn+1 = cn + �tf
(
tn, cn

)
p.

For cn+1 to be a first-order approximation int = tn + �t , we need lim�t→0 p = 1.
To prove this, we expand the product in Eq. (15):

g(p) = 1+
k∑

i=1

bip
i(�t)i − p = 0, (20)

with k denoting the cardinal number of setJn, and everybi denoting some product offj (t
n, cn)/cn

j ratios, independen
of bothp and�t .

For (20), one can easily see thatp = 1 is a solution for lim�t→0 g(p) = 0. Since the bisection technique is gu
anteed to converge to the only valid real value ofp, it will ultimately converge top = 1, making the new schem
first-order accurate. However, the actual accuracy of the foundp(r) depends on the number of bisection iterationr ;
only for r → ∞, we findp(r) → p. Therefore, the scheme (14) is theoretically only first-order accurate ifr → ∞.

In practice, we stop bisection when the following condition is satisfied:

2
pright − pleft

pright + pleft
< 10−9, (21)

pleft andpright denoting the left- and right bounds of the bisectionp-domain. Note that (21) implies that the fir
9 digits of p are known accurately. We found that additional bisection iterations had no qualitative effect
results. �
Theorem 12. The scheme(14) is unconditionally positive.

Proof. To enforce positive values for allcn+1
i , we found abovep ∈ (0,pmax). The bisection technique will return

value forp from within this range, independent of the number of bisection iterations. Thus, the new first-order s
is unconditionally positive.

This is perhaps even more obvious if one considers that (14) can be interpreted as a rescaling of the tim
preserve positivity, compared to forward Euler:�t → p�t . The actual value ofp as found by our scheme is restrict
by (16) and (17): precisely the bounds required by conditionally positive schemes.�
Theorem 13. The scheme(14) is conservative in the sense of Definition9.
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Proof. Using Definition 3, the new scheme is given by

cn+1 = cn + Sr
(
tn, cn

)
(�tp), with p =

∏
j∈Jn

cn+1
j

cn
j

.

This clearly satisfies Definition 9, with

rn = pr
(
tn, cn

)
.

Note that Definition 9 is satisfied for any arbitrary scalarp. Conservation of the new first-order scheme is there
independent of the number of bisection iterations.�
4.5. New scheme: second-order accuracy

We suggest the following scheme for second-order accurate results that are unconditionally positive and c
tive:

c(1) = cn + �tf
(
tn, cn

) ∏
j∈Jn

c
(1)
j

cn
j

,

(22)

cn+1 = cn + �t

2

(
f
(
tn, cn

) + f
(
tn+1, c(1)

)) ∏
k∈Kn

cn+1
k

c
(1)
k

,

where

Jn = {
i: fi

(
tn, cn

)
< 0, i ∈ {1, . . . , I }},

(23)
Kn = {

i: fi

(
tn, cn

) + fi

(
tn+1, c(1)

)
< 0, i ∈ {1, . . . , I }}.

Clearly, the first part of this scheme is identical to (14), i.e. identical to one integration step of the first-order s
The second part in the scheme may be rewritten in the form:

cn+1 = cn + �th
(
tn, tn+1, cn, c(1)

) ∏
k∈Kn

cn+1
k

cn
k

(24)
with h

(
tn, tn+1, cn, c(1)

) = 1

2

(
f
(
tn, cn

) + f
(
tn+1, c(1)

)) ∏
k∈Kn

cn
k

c
(1)
k

,

which, sinceh(tn, tn+1, cn, c(1)) is independent ofcn+1, adequately demonstrates that also the second part is m
matically similar to a step with the first-order method.

Given that the new scheme consists of two consecutive parts that are each mathematically equivalent
with the first-order scheme (14), the scheme {(22), (23)} can be implemented in the same manner as des
Section 4.4. Thus, the new scheme will need to find the real root of two different polynomials, for which we wil
apply the bisection technique.

Theorem 14. The scheme{(22), (23)} is second-order accurate.

Proof. As the first part of the new scheme is first-order accurate, we know:

c(1) = c
(
tn+1) + O

(
�t2) = cn + �tf

(
tn, cn

) + O
(
�t2).

This can be used in a Taylor expansion off(tn+1, c(1)):

f
(
tn+1, c(1)

) = f
(
tn, cn

) + ∂f
∂c

(
tn, cn

)(
c(1) − cn

) + �t
∂f
∂t

(
tn, cn

) + O
(
�t2)

(25)

= f
(
tn, cn

) + �t

(
∂f (

tn, cn
)
f
(
tn, cn

) + ∂f (
tn, cn

)) + O
(
�t2).
∂c ∂t
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Using this in the second part of Eq. (22), we obtain:

cn+1 = cn + �t

2

(
f
(
tn, cn

) + f
(
tn+1, c(1)

)) ∏
k∈Kn

cn+1
k

c
(1)
k

= cn + �t

2

(
2f

(
tn, cn

) + �t

(
∂f
∂c

(
tn, cn

)
f
(
tn, cn

) + ∂f
∂t

(
tn, cn

)) + O
(
�t2)) ∏

k∈Kn

cn+1
k

c
(1)
k

= cn +
(

�tf
(
tn, cn

) + �t2

2

(
∂f
∂c

(
tn, cn

)
f
(
tn, cn

) + ∂f
∂t

(
tn, cn

)) + O
(
�t3)) ∏

k∈Kn

cn+1
k

c
(1)
k

.

For the new scheme to be second-order accurate, the product term on the right must behave as 1+O(�t2) for �t → 0.
Notice that a behavior of this term as 1+ O(�t) would destroy the second-order of the scheme.

Because a step with the new first-order scheme has been proven to be first order accurate, we can use th
we perform two first-order steps consecutively (see Eq. (24)). For�t → 0 we may write:

∏
k∈Kn

cn
k

c
(1)
k

=
∏

k∈Kn

cn
k

cn
k + �tfk(tn, cn) + O(�t2)

,

∏
k∈Kn

cn+1
k

cn
k

=
∏

k∈Kn

cn
k + �t

2 (fk(t
n, cn) + fk(t

n+1, c(1)))
∏

k∈Kn
cn
k

c
(1)
k

+ O(�t2)

cn
k

,

∏
k∈Kn

cn+1
k

c
(1)
k

=
∏

k∈Kn

cn
k + �t

2 (fk(t
n, cn) + fk(t

n+1, c(1)))
∏

k∈Kn
cn
k

c
(1)
k

+ O(�t2)

cn
k + �tfk(tn, cn) + O(�t2)

.

Using the first term in the Taylor expansion of (25) for allfk(t
n+1, c(1)), we arrive at:

∏
k∈Kn

cn+1
k

c
(1)
k

=
∏

k∈Kn

cn
k + (�tfk(t

n, cn) + O(�t2))
∏

k∈Kn
cn
k

c
(1)
k

+ O(�t2)

cn
k + �tfk(tn, cn) + O(�t2)

.

Since
∏

k∈Kn cn
k /c

(1)
k behaves as 1+ O(�t) for �t → 0, we see that

∏
k∈Kn

cn+1
k

c
(1)
k

=
∏

k∈Kn

cn
k + �tfk(t

n, cn) + O(�t2)

cn
k + �tfk(tn, cn) + O(�t2)

indeed behaves as 1+O(�t2). Thus, the new scheme {(22), (23)} is second-order accurate. Notice that the abov
also demonstrates that the choice of the factor

∏
k∈Kn cn+1

k /c
(1)
k in (22) is not arbitrary. For instance, the alternat

choice
∏

k∈Kn cn+1
k /cn

k would lead to 1+ O(�t) for �t → 0, making the scheme only first-order accurate.
Note that in theory, second-order accuracy is achieved only for an infinite number of bisection iterations. In p

we stop bisection when condition (21) is satisfied; results did not further improve with more bisection iteration�
Theorem 15. The second-order scheme{(22), (23)} is unconditionally positive.

Proof. As demonstrated in Eq. (24), the final step of the second-order scheme is mathematically equivalent
order step, using the vector functionh(tn, tn+1, cn, c(1)) rather than the typicalf(tn, cn). The first-order scheme ha
been shown to guarantee positive values, independent off(tn, cn) and of the number of bisection iterations. Therefo
the second-order scheme likewise guarantees positive values for all elements of anycn, given a positive startin
vectorc0. �
Theorem 16. The second-order scheme{(22), (23)} is conservative in the sense of Definition9.
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Proof. Using Definition 3, the final part of the new scheme is given by:

cn+1 = cn + �t

2

(
Sr

(
tn, cn

) + Sr
(
tn+1, c(1)

))
p, with p =

∏
k∈Kn

cn+1
k

c
(1)
k

.

This may be written as:

cn+1 = cn + S
(
r
(
tn, cn

) + r
(
tn+1, c(1)

))(�t

2
p

)
,

which clearly shows that the second-order scheme satisfies Definition 9, with:

rn = p

2

(
r
(
tn, cn

) + r
(
tn+1, c(1)

))
.

Note as with the first-order scheme, Definition 9 is satisfied for any arbitrary constantp. Conservation of the new
second-order scheme is therefore independent of the number of bisection iterations.�
5. Discussion and conclusion

Mathematical analysis and numerical simulations have shown that the first- and second-order schemes w
in this paper are unconditionally positive, and conservative in the strict biochemical sense. The order of acc
both schemes has been proven mathematically, and is also well demonstrated by Fig. 14.

Figs. 6–13 demonstrate that the new schemes can deliver relatively accurate results, even at large�t . Our numerical
approximation of the solution of the linear system is clearly more accurate than the one provided by tra
schemes: the solution produced by the new first-order scheme is more accurate than that of the Euler schem
solution provided by the new second-order scheme is more accurate than that of the Runge–Kutta 2 schem
reflected by the local truncation error of the various schemes, as shown in Fig. 14. Conversely, the traditiona
Euler and Runge–Kutta schemes approximate the solution of the simple non-linear system more accurately
new schemes.

As shown in Fig. 15, the new schemes require a computational cost that is substantially higher than th
traditional schemes. This is a disadvantage, but not enough to discard the new schemes: biochemical problem
schemes that are unconditionally positive and conservative; results that do not satisfy these requirements
pletely meaningless in biochemical context. It is also worth noting that the new schemes will scale more favo
higher-dimensional systems than for instance the MP and MPRK schemes. This is due to the fact that the new
always solve a scalar polynomial equation, whereas the MP/MPRK schemes solve a linear system of orderI .

Fig. 6. Numerical approximation (�t = 0.25) and analytical solution of the simple linear system (10) with the forward Euler scheme.
e
u

d

e
l

a

r
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ithout

.

0).
Fig. 7. Numerical approximation (�t = 0.25) and analytical solution of the simple linear system (10) with the Runge–Kutta 2 scheme ((22) w
product terms).

Fig. 8. Numerical approximation (�t = 0.25) with the new first-order scheme and analytical solution for the simple linear system (10)

Fig. 9. Numerical approximation (�t = 0.25) with the new second-order scheme and analytical solution for the simple linear system (1
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Fig. 10. Coarse numerical approximation (�t = 0.5) with the forward Euler scheme and high-resolution numerical approximation (�t = 0.01)
with a Runge–Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Fig. 11. Coarse numerical approximation (�t = 0.5) with the Runge–Kutta 2 scheme ((22) without product terms) and high-resolution num
approximation (�t = 0.01) with a Runge–Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Although unconditional positivity is the default in biochemistry, it is worth noting that some biochemica
tems include one or more state variables that can become negative. For instance, the ERGOM model [15]
a state variable ‘oxygen concentration’ that represents oxygen when positive, and hydrogen sulfide whe
tive. With the new schemes, this can easily be accounted for by excluding any such state variables fromJn

andKn.
Given the new schemes are unconditionally conservative and positive, the step size will be dictated by a

reasons only. To obtain maximum efficiency, one could combine the new schemes with techniques that dyn
adjust the time step based on estimated local error. While such approaches are beyond the scope of this pap
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Fig. 12. Coarse numerical approximation (�t = 0.5) with the new first-order scheme and high-resolution numerical approximation (�t = 0.01)
with a Runge–Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

Fig. 13. Coarse numerical approximation (�t = 0.5) with the new second-order scheme and high-resolution numerical approximation (�t = 0.01)
with a Runge–Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

remark that the second-order scheme (22) also provides us with a first-order approximation to the solution in
time level. The difference between this value and the final result can be considered a (conservative) estima
local truncation error, and thus serve as the basis of an error estimator.

Further, we have shown that the modified Patankar and modified Patankar–Runge–Kutta schemes pre
Burchard et al. [3] are not conservative for any arbitrary biochemical system. The new schemes do conserve
energy in two special cases, namely if: (1) all reactions in the system contain one source compound, or (2) th
change over time is the same for all source compounds.
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Fig. 14. The local truncation error summarized over all state variables, as defined in Eq. (9), for the reference forward Euler and Rung
((22) without product terms) schemes and the new first-order and second-order schemes. Above: results for the simple linear system (10
with �t = 2i × 10−4 with i = 0, . . . ,12, andtmax= 1.8. Below: results for the simple non-linear system (1), calculated with�t = 2i × 10−2 with
i = 0, . . . ,7, andtmax= 30. The strong increases in local truncation error at high�t for the Euler and Runge–Kutta schemes are due to instab

Condition (1) is only met if one deals with simple biochemical systems [5]; realistic systems readily in
multiple source compounds per reaction. For instance, most marine ecosystems are modeled with phyto
growing on two or more nutrients (e.g. nitrate, phosphate, iron), and thus contain reactions with multiple
compounds [13]. It must be noted that in some cases, a system that does not satisfy condition (1) can be
to a system that does via elimination of variables (elimination is possible in any conservative system, as roS
cannotbe linearly independent; see Definition 7). This is demonstrated in Reder [19]. One could apply this te
to reduce the simple non-linear system (1) to a two-dimensional system that satisfies condition (1). However,
complex and realistic systems, this is typically not feasible in practice.

Condition (2) is even more unlikely to be met, as it requires both specific initial state variable values (the
corresponding to the stoichiometric ratio of use), and highly simple system kinetics.

This does not imply that the modified Patankar schemes are without value: for biochemical systems that
one of both conditions, the modified Patankar schemes offer a relatively inexpensive approach, which incide
known to perform well on stiff systems [3,4].

In the present paper, we do not analyze the stability properties of the new schemes in detail. Application of
schemes to the infamous, highly stiff Robertson test case proved that the schemes have at least some prob
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Fig. 15. Execution times of six integration schemes, relative to the forward Euler scheme, for the two sample systems. Shown respe
forward Euler scheme, the second-order Runge–Kutta scheme (RK2) ((22) without product terms), the Modified Patankar (MP) schem
Modified Patankar–Runge–Kutta (MPRK) scheme [3], the new first-order scheme (new 1) and the new second-order scheme (new 2). Co
costs for the backward Euler method depend strongly on the means chosen to solve the non-linear system of equations, and are therefo

(highly) stiff systems: the new first-order scheme rendered oscillating (but positive) solutions, whereas the
order scheme stalled the system through extremely smallp factors. This behavior differs notably from that of t
modified Patankar schemes, which were capable of resolving the Robertson test case [3] and other stiff bio
problems [4]. This difference between Patankar-inspired schemes can intuitively be explained as follows: MP
adjust the effective time step for different components of the system individually, whereas the new schemes
effective time step for the whole system to the fastest component. Nevertheless, under no circumstances wi
schemes perform more poorly with respect to stability than the traditional schemes they were based upon,
new schemes can be interpreted as traditional schemes with a downscaled time step. For many purposes
suffice; preliminary results showed that the new schemes were capable of solving the realistic stiff test cas
This line of thought also suggests alternative approaches: one might selectively slow down individual react
rather than the whole system, thus obtaining a scheme that performs well on stiff systems, and (unlike MP s
adheres to biochemical conservation.

In conclusion, this paper has presented a structured, mathematical approach to the biochemical concept
vation. This approach integrates recurrent ideas in biochemistry [20,19,10,7], and, to our knowledge, has n
been used in the analysis of numerical schemes. It may provide a context of analysis for existing and future
and will hopefully result in an increasing number of schemes known to be suited for biochemical problems.
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